
": ' OPY
AD-A230 285

CECOM

CENTER FOR SOFTWARE ENGINEERING

ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Analysis of the Impact of
the Ada Runtime Environment on Software

Reuse

CIN: C02 092LA 0007

31 MAY 1989

Ifor' jtldc eom

ANALYSIS OF THE IMPACT OF THE ADA
RUNTIME ENVIRONMENT ON SOFTWARE REUSE' AAocession For

NTIS GRA&I -
DTIC TAB

by Unannounced [
Jus fcatia

Anthony Gargaro BY

Computer Sciences Corporation Distribution/

Defense Systems Division Availability Codes
Avail and/or

Dist Special

prepared for

U.S. Army CECOM.)CSE
Fort Monmouth, New Jersey-

December 31, 1988

Contract No. DAAB07-85-C-K524, Task 7067-34040

1. The material presented in this report represents the author's
opinions and perceptions and should not be construed as those
of Computer Sciences Corporation nor the Department of the
Army.

Summary

The number of applications using the Ada language is increasing
rapidly with the availability of over 200 base and derived
validated compilers. Reports indicate that many of these
applications have been successfully developed from reusable
software parts or have been developed to yield reusable software
parts. In contrast to these reports, other applications have
identified deficiencies in tche Ada RunTime Environment (RTE) that
have necessitated restricted use of Ada with a consequent impact
on the potential reuse of Ada software. Therefore, improving the
reuse of software in these applications depends to some extent
upon careful analysis and understanding of the issues related to
software reuse and the Ada RTE.,

- The latter applications typically comprise embedded Mission
Critical Computer Resource (MCCR) systems that must satisfy real-
time performance constraints that are usually dependent upon
specialized hardware. These constraints have caused the intrusion
of non-Ada code into the applications and the exploitation of
specific idiosyncrasies of the RTE that are within the semantic
fringes of the Ada standard [DoD83). While reducing the use of
non-Ada code may not be feasible for applications that must
interact with special controls, devices, and weapon systems,
ameliorating the deleterious effects of deficiencies and idiomatic
behavior of the RTE on the reuse of Ada parts must receive prompt
attention. / .

Appropriate resolutions can be anticipated in the scheduled
revision to the Ada standard (Ada 9X) [ABD88] if the impact of the
RTE on software reuse and the attendant costs and effects are
clearly identified and understood. Furthermore, it is prudent to
examine resolutions outside of the scope of Ada 9X so that
techniques can be devised to ensure that any remaining RTE issues
are addressed. These resolutions may include standard packages to
support the RTE, classes of RTEs, tailorable RTEs, and guidelines
for using the RTE.

i

Table of Contents

1. Introduction ... 1
2. Software Reuse 2
3. Ada and Reuse 4
4. Ada and RTE .. 6
5. RTE and Reuse Analysis 7
5.1 RTE Performance

5.2 Levels of Abstraction 9

5.2.1 Concurrency .. .10
5.2.2 Event Control 11
5.2.3 Storage Management 12
5.2.4 Timing ... 13
5.3 RTE Dependencies 14
6. RTE/Reuse Initiatives 15
6.1 Ada Reusability Handbook 15
6.2 Catalog of Interface Features and Options 16
6.3 Model RunTime System Interface 17
7. Conclusions and Recommendations 17
8. References .. .18

ii

Analysis of the Impact of the Ada RTE on Software Reuse

1. Introduction

There is growing evidence in some current Department of Defense
(DoD) application domains that a moderate increase in programmer
productivity can be realized when an aggressive policy for
software reuse is employed. One important facet of this policy is
the use of the Ada language combined with a methodology that
adheres to disciplined design and programming practices. However,
there is a concern that software reuse will be severely limited in
those DoD application domains that require the extensive use of
Ada constructs serviced by the Ada RunTime Environment (RTE).
Unfortunately, it is in these application domains, namely embedded
real-time MCCR systems, that Ada is mandated as the preferred
programming language [DoD87]. Because there is a paucity of
experience in using Ada for these applications, there is an
immediate need to determine the validity of the aforementioned
concern in terms of analyzing the impact of the Ada RTE on
software reuse.

The objective of this report is to provide an initial analysis
that will establish a basis on which to plan future actions. The
report comprises seven sections following this introduct4ion.
Section 2 briefly reviews software reuse from the design and
implementation perspectives; it deliberately provides a language-
independent treatment of the subject. Section 3 relates the Ada
language contribution to the design and implementation of reusable
software parts. Section 4 introduces, the Ada RTE. Section 5
provides an analysis of the significant constraints that RTE
issues may have on software reuse. Section 6 summarizes important
activities that may remove some of these constraints. Section 7
offers some specific conclusions and recommendations. Finally,
Section 8 identifies documents that are referenced in the
preceding sections using an organizational abbreviation of the
sponsor and year of publication enclosed within squared brackets.

There are many factors that contribute to the successful reuse of
software. This report addresses the construction of reusable parts
and the composition of applications from reusable parts. The
acquisition, distribution, management, retrieval, and use of
reusable software are not addressed. In addition, it is assumed
that the reader has some acquaintance with the principles of
software reuse and the Ada language.

- 1 -

Analysis of the Impact of the Ada RTE on Software Reuse

2. Software Reuse

Software reusability may be informally defined as the property of
a software part to be adapted for use in the composition of
applications other than the one for which it was originally
developed. This definition emphasizes reuse of parts constituting
an application rather than the reuse of the application itself. In
addition, it specifically recognizes that in many applications it
may be essential that a part be adaptable to ensure effective
reusability [CSC86). Ideally, a part may be any entity within a
particular software architecture. For example, in a functionally
oriented architecture, it may represent either a calling entity
(client) or called entity (server).

The opportunity to reuse software is frequently proposed as one
strategy for reducing the cost of developing and of enhancing the
reliability of complex large-scale applications. However, software
reuse usually incurs greater intellectual intensity in the initial
development of a part and in many instances a decrease in its
performance efficiency. For embedded real-time MCCR systems, the
tradeoff between increased reliability and decreased performance
may determine the degree of reusability possible.

The planned reuse of software has been practiced since the
advantages for common libraries were recognized in the early days
of high-level programming languages. The libraries were usually
restricted to include only mathematical and statistical routines
that implemented well-defined numerical algorithms. However, since
then, software reuse technology has not progressed to the same
level of sophistication that its counterpart technology has
achieved with respect to hardware. This results from the lack of
discipline and formalism used in the design and implementation of
reusable software. Often, reusability is relegated to an
implementation activity that is left to the discretion of the
individual programmer.

While some measure of part reuse is possible through portable
programming practices, it is unlikely that a part that is not
specifically designed for reuse will be reused outside of a
particular application. Furthermore, the application domain must
be understood in order to precisely establish reusability
requirements for the part. These requirements are essential for

-2-

Analysis of the Impact of the Ada RTE on Software Reuse

reusability to be addressed as a design criterion for the
application in which the part is originally developed. This
criterion must address both the reuse of existing parts and the
development of new parts within an application. Unless an
application is explicitly designed to take advantage of existing
reusable parts, software will not be reused. Conversely, if
applications are not designed to offer reusable parts, the cost to
retrofit a part for reuse may eliminate any advantage to a
potential application. Consequently, software reusability becomes
an essential consideration of a software development methodology
(SPC88).

The reuse of a software part requires a precise specification of
the part's function and of its interface to client software. The
interface should be-sufficiently flexible and general to satisfy
its scope of reuse within the application domain. The interface
should be carefully designed to ensure that excessive generality
of a part does not pena.ize performance to the extent that its
reuse is compromised. Popular design principles that are commonly
cited to aid in specifying functionality and interfaces for
reusable parts are functional cohesion, weak coupling, and
parametric abstraction [ESD86]. Parts that adhere to these
principles will often achieve a high degree of composition
orthogonality, which is an important criterion proposed for
evaluating software reusability (CSC86, CSC87].

Complex time-critical requirements are intrinsic to embedded real-
time MCCR systems. Typical applications comprise software that
must be executed within rigid synchronization and time constraints
that are essential for successful operation. Requirements of the
software include concurrency, fault tolerance, and reliable
control of resources. The specification of these requirements is
extremely difficult since they frequently include dependencies on
the resources available and low-level hardware/software
interactions specific to the operational environment of the
application. These dependencies are usually not amenable to a
formal specification. There is a danger that without precise
formal requirements, the resulting software may achieve successful
performance using fragile algorithms that evolve from an ad hoc
process of iterative behavioral refinement. Any subsequent change
to the operational environment of the application may be
detrimental to the correct execution of a part. The potential for

-3-

Analysis of the Impact of the Ada RTE on Software Reuse

software reuse is diminished because the parts are not resilient
to change.

The susceptibility of parts to these dependencies increases the
need for parts to be transportable. Transportability is another
criterion proposed for evaluating software reusability [CSC86,
CSC87]. This criterion measures the degree to which equivalent
execution behavior can be achieved when an application executes in
a different operational environment. Equivalent execution requires
that the application performs its specified function to the extent
that the new operational environment permits. Achieving identical
execution requires that the application has been successfully
insulated from all dependencies, explicit and implicit, on the
operational environment.

Finally, the inability to adequately express time-critical
requirements presents a problem that pervades many of the issues
for software r-3use from domain analysis to the choice of design
and implementation techniques. For example, if a part is to be
reused in deadline-driven applications, its execution time becomes
an important attribute requiring accurate documentation with
respect to the application domain. Unless a part is adequately
documented its potential for reuse is severely compromised. At a
minimum, the documentation must specify the function performed by
the part and how the part may be reused within an application
domain [CEC88a]. A corollary is that the algorithmic code of a
reusable part must be readable to complete its documentation.

3. Ada and Reuse

The Ada language standard provides a significant advance towards
developing reusable software parts through the use of a single
high-order procedure-oriented programming language. The standard
supports straightforward tenets for software development and
establishes a practical basis for formalizing design and
programming disciplines (CSC87]. These disciplines are essential
for promoting an aggressive policy of software reuse within well-
defined application domains. The tenets and associated constructs
that are particularly important to software reuse are summarized
in the following paragraphs.

- 4-

Analysis of the Impact of the Ada RTE on Software Reuse

Abstraction. Abstraction is a means of expressing essential design
and implementation information at different levels of detail. The
different levels of detail enable complex applications to become
intellectually more manageable and understandable. When these
levels of detail are consistently and systematically refined using
an appropriate methodology, e.g., functional decomposition or
object orientated analysis, the design and implementation yields
an application comprising an infrastructure of potentially
reusable abstractions. Ada directly supports both data and
functional abstraction techniques through constructions such as
packages, subprograms, and task types, that allow the separation
of a part's functional details from its reusable interface
specification.

Completeness. Completeness requires that all design and
implementation detail is presented and consistently defined for an
application. Ada promotes completeness through the interface
specifications of packages, subprograms, and tasks, that are
checked when these constructions are called or are elaborated.
Consequently, the interface to a reusable part becomes a contract
for its successful use that must be fulfilled by the client
software.

Information Hiding. Information hiding allows the integrity of an
interface to be safeguarded by restricting access to compromising
implementation detail. Ada restricts such detail through limited
and private types. Using these types to develop abstractions
increases the reliability of an application and its constituent
parts. In addition, the control of implementation detail increases
the opportunity for reusing the design of a part.

Locality. Locality minimizes referential complexity in order to
increase the maintainability and understanding of an abstraction.
If entities referenced by a part implementing an abstraction are
dispersed, logically and physically, the part is unlikely to be
reusable and is indicative of a flawed abstraction. The package
construction promotes locality while allowing control of remote
references through the use of context clauses.

Modularity. Modularity promotes the partitioning of an application
into a system structure more adaptive to design anH 1-mplementation
techniques. The partitioning usually results in more configurable

-5-

Analysis of the Impact of the Ada RTE on Software Reuse

and more manageable units for implementation. Modularity is an
essential principle for software reuse since modules, or parts,
rather than entire applications are reused. Units of modularity in
Ada are subprograms, packages, tasks, and generic units.

Verifiability. Verifiability requires that the design and
implementation of an application can be proven consistent without
a demonstration of correct execution. Usually correct execution of
software is established by exhaustive testing within a particular
application. Therefore, for software that is to be reused in
different applications, formal verification of its correctness for
the domain of application is necessary. While verifiability of
reusable software is currently impractical, the inherent
consistency within Ada provides a basis for limited proofs of
correctness of parts that have minimal dynamic operations and are
serially executed.

4. Ada and RTE

A principal objective of the Ada languaqe is to remove the
dependency of embedded real-time MCCR systems software on
specialized executive services. Traditionally these systems have
relied on application specific executives to support the
particular application programming language. This has seriously
impeded the reuse of software among different applications since
these executives were designed using incompatible models of the
execution environment and were not readily transportable.

Ada presents to all applications a single semantic model of the
execution environment. This model is commonly termed the Ada
RunTime Environment (RTE) and while its actual implementation may
vary significantly over different target computers, its semantics
are bounded by the Ada standard. Within an Ada program the RTE is
responsible for achieving concurrency, calling units, converting
data, managing storage, performing I/O, and synchronizing actions.
Therefore, developing parts adhering to this model not only
eliminates the need for typical executive services but promotes
software reuse by increasing the transportability of applications.
Furthermore, parts may be developed so that their logical
structure is not fractured by an inconsistent level of abstract-3n
between the constructs of the language and those of the executive.

- 6 -

Analysis of the Impact of the Ada RTE on Software Reuse

For example, in many instances the abstraction level of executive
services are oriented to a low-level procedural interface
requiring artificial abstractions to raise it to the level of the
application's programming language.

Conceptually, the code executing in the target computers should
comprise the application code generated by the Ada compiler, the
Ada RTE, and a modest executive kernel to implement privileged
low-level target operations, e.g., context switching among
concurrent tasks. Together the software that supports the
application code generated by the Ada compiler and the target
computer may be termed an Ada Virtual Machine (AVM). Optimally,
within an application domain, the AVM provides an efficient and
sufficient foundation for all Ada software. Since there is reduced
need and opportunity for the parts to access functions beyond
those made available by the AVM, the parts from different
applications should be more reusable.

5. RTE and Reuse Analysis

The previous two sections have summarized the advantages that Ada
and its RTE contribute to software reuse. In this section, RTE
issues that may significantly offset these advantages and handicap
software reuse are presented. These issues are dominated by the
following questions:

1. Is the performance of RTE implementations comparable to
that of contemporary real-time executives?

2. Is the level of abstraction to the RTE appropriate for
developing embedded real-time MCCR systems?

3. Is the RTE interface sufficiently defined to eschew

implementation dependencies?

To an extent the questions are not mutually exclusive; for
example, performance may be impacted by the level of abstraction.
Therefore, similar concerns may permeate the individual analyses
of these issues.

-7-

Analysis of the Impact of the Ada RTE on Software Reuse

5.1 RTE Performance

An underlying assumption of using Ada for developing embedded
real-time MCCR systems is that the performance efficiency of the
RTE implementations are comparable to the specialized services of
contemporary real-time executives designed for the same target
computer configurations. Too frequently, the Ada analogues and
paradigms that replace these specialized services are offered with
insufficient evidence that satisfactory performance efficiency can
be achieved. Unless comparable performance efficiency is possible,
it is likely that vestiges of specialized executive services will
continue to exist within the AVM. This will complicate software
reuse since to reuse a part in a different target execution
environment, the part must be purged of these executive services
and retrofitted to use the Ada RTE or other executive services.
-he probability that this exercise will result in reliable
software decreases each time the retrofit is undertaken.

While no formal evaluation criteria of RTE performance is
available to produce comparative data, there appears to be
consensus in the embedded real-time community that many RTEs are
less efficient than contemporary real-time executives (ACM87a,
ACM88b]. RTE implementations are frequently criticized for using
an excessive amount of storage and for exacting high execution
time penalties. These inefficiencies are sometimes exacerbated by
implementation strategies within the RTE that are totally devoid
of any optimization techniques. Paradoxically, it would seem that
RTE implementations are frequently designed for reuse in the sense
that they can be easily adapted to support the rapid
implementation of different AVMs. These AVMs satisfy the Ada
validation requirements but are often encumbered with general-
purpose operating systems that are the antithesis of the compact
executive kernel.

The use of a general purpose operating system within the AVM
presents a dual threat to software reuse. The first is the
imposition of significant overhead on the RTE. In some instances,
restrictions imposed by the operating system upon the RTE result
in execution time behavior that cripples the use of Ada. A typical
example occurs when the operating system suspends the execution of
the RTE to complete a service request, causing all tasks within
the Ada program to become blocked. Under these conditions,

-8-

Anal--qis of the Impact of the Ada RTE on Software Reuse

applications will not use certain Ada abstractions. The second is
that operating system services are usually readily accessible to
the Ada application through the pragma INTERFACE. The use of this
pragma may offer an inviting functional, more efficient,
alternative that will undermine the use of Ada. Once such services
penetrate the application, the semantic boundary of the standard
is inevitably compromised.

Finally, thei is an expected loss of efficiency because the RTE
model is orientated towards supporting static compiler-checked
abstractions. These abstractions are not adaptable dynamically to
the availability or type of processing resources. From the
perspective of software reuse, the loss illustrates the difficulty
of the tradeoff between reliability and performance that must be
accommodated within any programming language.

5.2 Levels of Abstraction

For a software part to be reusable it must execute correctly
within the requirements of its domain of application. When this
domain of application includes the requirements typical of
embedded real-time MCCR systems, a part is often expected to
satisfy "hard" timing constraints that are fundamental to the
successful operation of the application. Therefore, achieving
correct execution demands that the timing behavior of a part be
predictable and reliable. The transformation of timing behavior
into formal resource utilization abstractions becomes a central
design objective of the application.

The abstractions supported by the RTE that pertain to resource
utilization have been criticized by the real-time Ada community as
being deficient. Generally, the critics have argued, with varying
degrees of intensity, that the level of the abstractions are not
responsive to the language requirements as specified in the
Steelman document [DoD78]. Many abstractions are considered to be
defined at an i-nappropriate level of detail and fail to provide
sufficient con.;rol through their interface and associated
functionality. In particular, the abstractions for concurrency,
event control, storage management, and timing have been identified
as specific issues for real-time systems (CEC88b].

- 9 -

Analysis of the Impact of the Ada RTE on Software Reuse

5.2.1 Concurrency

The Ada concurrency model supports asymmetric communication and
synchronization among parallel separate threads of control within
a single Ada program. The threads of control are represented as
autonomous processes called tasks. The mode of parallelism is
multiple instruction multiple data (MIMD), and the model provides
a unified abstraction for expressing the classical paradigms of
protecting shared data and of message (signal) processing.
Furthermore, the processing capacity of the execution environment
is transparent to the application, thereby promoting the notion
that an Ada program may be executed with minimal regard to whether
the target computer is a single, multiple, or distributed
processor. Unfortunately, the conceptual elegance and capacity
transparency properties are not universally perceived as benefits
for achieving "hard" real-time deadlines.

There are several reasons for concern regarding the abstractions
of the Ada tasking model. The advantage of integrating concurrent
execution into the programming language is accompanied by a
penalty of increased semantic complexity in the language. This is
evident in fundamental operations such as task activation
termination, and abortion that require significant RTE support and
are vulnerable to misuse. The level of abstraction provided by the
rendezvous semantics, while adequate for pedagogical examples of
concurrency, may be quite unsuitable for embedded real-time MCCR
systems. For example, the RTE must be carefully instrumented and
restricted to support formal task-scheduling algorithms, and
arcane rendezvous paradigms are necessary to mimic simple
prevailing models of periodic task execution. This leads to
potential dependencies upon the RTE and excessive execution-time
overhead. Furthermore, rudimentary concurrent programming
abstractions, e.g., buffers, monitors, semaphores, often require
the introduction of intermediary (agent) tasks. Their impact on
software reuse can be detrimental to performance and reliability.

While comparative arguments in favor of the rendezvous model are
convincing [Hon86], they fail to recognize the inherent
asynchronism of embedded real-time MCCR systems. Consequently,
reusable parts that must accommodate asynchronism within the
application may be unexpectedly thwarted by the enforced
synchronization of the RTE.

- 10 -

Analysis of the Impact of the Ada RTE on Software Reuse

The degree to which the model can retain the capacity transparency
of the target execution environment is problematic. The
development of reusable parts without regard to whether the target
execution environment is a single processor or a configuration of
loosely coupled computers does not appear to be practical. Once
the possibility of distributing the execution of an Ada program is
raised, the issue of program partitioning becomes significant.
Partitioning strategies may be described as either "post-
partitioning" or "pre-partitioning". Each strategy requires RTE
support that may affect software reuse when, for example, objects
are located such that referencing them incurs an unacceptable
performance efficiency overhead. One- rudimentary scheme proposed
for developing reusable parts for distributed execution
environments using pre-partitioning requires adherence to specific
guidelines for composing reusable applications (CEC88c]. However,
the scheme assumes the cooperation of the RTE to support remote
references across loosely coupled computers.

5.2.2 Event Control

The control of events is a fundamental requirement of embedded
real-time MCCR systems. Events may be synchronous or asynchronous.
The primary support for controlling events in Ada is through a
facility for the RTE to explicitly bind a hardware interrupt to a
predetermined thread of control, i.e., an entry of a task. In
addition, the RTE may elect to implicitly bind an interrupt
through a predefined exception. A less well-defined abstraction is
provided through the standard package for low-level input and
output operations. None of these abstractions are defined at a
level that ensures any degree of reuse for parts that utilize
them.

The explicit binding of interrupts to task entries requires the
interrupt to be named using a target dependent identification,
i.e., SYSTEM.Address. Interrupts cannot be disabled, and the
disposition of unserviced interrupts is undefined. Therefore,
dynamically changing the processing associated with an interrupt
cannot be achieved safely. Furthermore, RTE implementations are
frequently required to specify compiler-dependent restrictions in
order to provide guaranteed interrupt service within a prescribed
time.

- 11 -

Analysis of the Impact of the Ada RTE on Software Reuse

The implicit binding of interrupts to predefined exceptions is
analogous to a system trap. Due to the synchronous property of
exceptions, such exceptions cannot result in the direct execution
of a separate thread of control, viz., a different task. In
addition, their contribution as abstractions for reusable software
is faulted because they are necessarily compiler dependent.

The control of external events through low-level input and output
operations provides a reusable interface to the RTE but with
functionality that is essentially dependent upon the target device
for the operations. To monitor the occurrence of an event requires
that each event be assigned a separate task to resume execution
after the input operation, i.e., ReceiveControl, has completed.
The response time to an event will be difficult to predict because
of the potential delay in completing the operation.

5.2.3 Storage Management

The management of dynamic storage by the RTE is primarily effected
through Ada access types. Additional control is provided through
generic subprograms, pragmas, and representation clauses. The
motivation for the abstractions is reliability rather than
performance efficiency [Hon86]. While reliability is a necessary
attribute for reusable software, the potential loss of efficiency
and functionality offered by the abstractions to the RTE may
restrict their use for embedded real-time MCCR systems.
Traditionally, the target computers for these applications have
imposed stringent limitations on storage capacity requiring that
the resource be economically utilized. At a minimum, the
allocation and deallocation of storage must be flexible and
efficient.

The RTE allocates storage explicitly through allocators.
Allocators allow the dynamic creation of a variety of logical data
structures that are conducive to reusable software. An omission is
the ability for a part to exercise control of the mapping of
logical data to storage through the RTE. For example, when
different classes of storage are available, it is often desirable
to allocate specific structures to a particular class, e.g.,
real/virtual, protected/unprotected, to increase part efficiency
and reliability. In addition, there are instances when it is
important that this control be available when the RTE implicitly

- 12 -

Analysis of the Impact of the Ada RTE on Software Reuse

allocates storage during program execution. For example, when two
tasks are executed with predefined periodicity, allowing one task
to overlay the other provides practical storage control without
compromising part reuse.

The explicit deallocation of storage by the RTE may only be
influenced through the pragma CONTROLLED for access types and the
generic subprogram UNCHECKEDDEALLOCATION for access objects. As
the name implies, the latter facility impacts reliability by
introducing the possibility of anonymous (dangling) access values.
Unfortunately, without a well-defined storage reclamation strategy
provided by the RTE, the subprogram may be used extensively by
embedded real-time MCCR systems. While the pragma allows the RTE
to inhibit automatic storage deallocation, there is no comparable
interface to ensure that storage is reclaimed for an access type
collection. Storage reclamation becomes an RTE dependency of
significant impact by causing unpredictable application execution
when reusing parts that have both space and time constraints.

5.2.4 Timing

Timing considerations have infiltrated many of the previous
discussions because of their dominant role in embedded real-time
MCCR systems. Therefore, the impact of the RTE with respect to
time on software reuse is a significant issue since the Ada
abstractions for time depend upon the RTE implementation.
Unfortunately, the Ada timing abstractions have been recognized as
lacking both a reliable interface and essential functionality
[IDA88]. This leads to difficulty in developing reusable parts
that require precise control over timing, in particular, execution
timing.

The abstractions for timing should support the bounding of the
elapsed time between events, and the execution time of sections,
including separate control threads, of code. The former is often
necessary to confirm functional requirements while the latter is
required to facilitate resource scheduling and to detect aberrant
execution. The language timing abstractions to the RTE, the Ada
delay statement and Calendar package, do not adequately address
these requirements. For example, using these abstractions as part
of the tasking model to simulate a simple reusable cyclic
scheduler is not straightforward because of the unguaranteed

- 13 -

Analysis of the Impact of the Ada RTE on Software Reuse

accuracy of the delay and uncontrolled latency in timing
computations. Additional imprecision is introduced into timing
computations by the absence of attributes that would extend the
model for numeric accuracy to time, e.g., formalizing a
relationship between SYSTEM.Tick and Duration'Small. This prevents
reusable parts from determining the timing characteristics of the
target execution environment and providing for appropriate
contingent action when necessary.

Finally, the timing abstractions fail to separate functionality by
distinguishing between standard clocks and real-time clocks, and
do not support a reasonable model of time for distributed target
execution environments.

5.3 RTE Dependencies

Abstracting the traditional functions of specialized executives
into RTE constructs would seem to guarantee predictability and
reliability of reusing an Ada part over its application domain.
Unfortunately, Ada constructs having implied temporal semantics
are specified at an imprecise level of abstraction and result in
restricted functionality or permissive semantic specifications.
The level of abstraction compromises uniformity of implementation
among RTEs resulting in dependencies upon the RTE. Since the
dependencies are not specified by the application domain, this
leads to software that is less reusable.

These dependencies result in unpredictable or unreliable timing
behavior of a part when reused outside of the application in which
it was originally developed. This condition is further exacerbated
by the informality in the requirements specification of
application domains for embedded real-time MCCR systems. The
documentation for the part will most likely propagate this
informality in critical areas of timing behavior, thereby
camouflaging the part's lack of predictability and reliability.

A further problem is caused by the existence of subtle implicit
dependencies upon the RTE. This problem is manifest when combining
reusable parts in an execution environment that is different from
those used to originally develop the parts. For example, when
combining two parts, three different RTEs must be considered; two

- 14 -

Analysis of the Impact of the Ada RTE on Software Reuse

in the original execution environments, and one in the new
execution environment. This can precipitate a particularly
insidious problem because the applications enclosing the parts may
have been successfully transported to the new execution
environment and have demonstrated functionally identical execution
to that achieved in their original execution environments.
Furthermore, the parts may have been separately combined with
other parts and have achieved successful execution, thereby giving
a high degree of confidence that the parts are free of RTE
dependencies. It is only when combining the parts dependent upon
conflicting RTE behavior that failure or aberrant execution will
occur (CSC86].

6. RTE/Reuse Initiatives

The impact of the Ada RTE on software reuse, in many instances,
raises issues that have been the source of technical debates
within the community of real-time Ada programmers for some time.
These debates have resulted in the formation of several ongoing
initiatives that may ameliorate many issues which in turn will
improve the opportunity to develop reusable software. Three
directly relevant initiatives are the preparation of an Ada
Reusability Handbook, the specification of a Catalog of Interface
Features and Options, and the development of a Model RunTime
System Interface.

6.1 Ada Reusability Handbook

The Ada Reusability Handbook (ARH) has been developed by Computer
Sciences Corporation in conjunction with the U.S. Army CECOM)CSE
[CSC87, CEC88c]. The purpose of the ARH is to identify recommended
guidelines for writing reusable parts. The guidelines are
accompanied by a preliminary annex devoted to a discussion of
writing reusable parts in the presence of real-time requirements.

The ARH is oriented towards effective reusability, i.e.,
developing parts that have a high pragmatic potential for reuse.
The guidelines emphasize that through the -use of defensive
programming techniques and a thorough understanding of Ada
constructions supporting software reuse, effective reusability can
be achieved within the constraints of the design. To increase the

- 15 -

Analysis of the Impact of the Ada RTE on Software Reuse

understanding for a guideline, each guideline is categorized with
respect to one of four criteria defined to evaluate software
reusability. It is expected that the ARH will eventually provide a
modest contribution to formalizing a coding discipline for
software reuse. Such a discipline would increase the reusability
of part interfaces while protecting their functionality from
idiomatic RTE behavior.

6.2 Catalog of Interface Features and Options

The Ada RunTime Environment Working Group (ARTEWG) under the
sponsorship of the Association for Computing Machinery's (ACM)
Special Interest Group on Ada (SIGAda) has specified a preliminary
Catalog of Interface Features and Options (CIFO) for the Ada RTE
[ACM87b]. The purpose of the CIFO is to provide common user-RTE
interfaces to RTE capabilities that were intentionally
(necessarily) omitted from the Ada standard.

The CIFO may be viewed as a consistent and systematic extension to
the Ada Virtual Machine (AVM) as described earlier. Furthermore,
the rationale for the CIFO states:

"Common interfaces are clearly needed to make the
development of high-quality software practical for the

full range of applications that Ada was intended to
serve, especially the domain of embedded real-time
systems. This Catalog of Interface Features and Options
is being developed to promote commonality with respect to
such implementation dependencies, and to promote
reusability and transportability."

The current CIFO does not address all of the potential issues.
However, the issues that are addressed respond to the three
questions posed in Section 5. Careful attention is given in the
catalog entries that have been specified to improving RTE
performance, refining RTE abstractions for real-time requirements,

and reducing RTE dependencies. For example, an interface is
specified that guarantees the execution of time-critical sections
of code to be completed without preemption. This exemplifies a
refined level of abstraction that will improve performance and, by
presenting a common interface specification, will remove an RTE
dependency.

- 16 -

Analysis of the Impact of the Ada RTE on Software Reuse

6.3 Model RunTime System Interface

The Ada RunTime Environment Working Group (ARTEWG) under the
sponsorship of the Association for Computing Machinery's (ACM)
Special Interest Group on Ada (SIGAda) has specified a preliminary
Model RunTime System Interface (MRTSI) for Ada [ACM88a]. The
purpose of the MRTSI is to describe an interface to the
"executive" functions of Ada, e.g., tasking, in order that these
functions can be implemented and tailored for real-time embedded
systems.

The MRTSI not only promotes software reuse by facilitating the
tailoring of Ada RTEs to application domain requirements, it
introduces into the domain of compiler technology the potential
reuse of compiler parts, viz., those associated with implementing
the Ada runtime system. In addition, the increased visibility into
the Ada runtime is an incentive for compiler vendors to reduce RTE
dependencies through improved cooperation. Finally, future
revisions of the MRTSI are expected to support the CIFO, thereby
enhancing the contribution of each initiative toward software
reuse.

7. Conclusions and Recommendations

The expected potential for software reuse within embedded real-
time MCCR systems is difficult to predict. However, it is evident
that Ada will be the primary influence on determining this
potential in the near term. The previous sections have amplified
both the strengths and weaknesses of using Ada to develop reusable
parts. It has been observed that the principal threats to software
reuse are the impediments that the RTE presents to developing
applications with "hard" real-time requirements. In many
instances, the impediments result from language design decisions
and tradeoffs that need to be reviewed with the experience that
has been gained from compiler implementations and applications
development [ABD88].

The revision to the Ada standard is the preferred choice for
addressing these impediments. Some revisions are relatively
straightforward and are supported by real-time Ada programmers,
e.g., consistent specification of priority, while others are less

- 17 -

Analysis of the Impact of the Ada RTE on Software Reuse

straightforward and schismatic, e.g., asynchronous exceptions. A
potential conflict in revising the standard is that in some
instances, the emphasis is on minimizing the semantic freedom for
the RTE, while in other instances, the emphasis is on increasing
its freedom. Compounding the dilemma are proposals for introducing
"light-weight" tasks and support for distributed partitions.
Clearly, it is impractical to envisage a harmonious reconciliation
of these proposals within Ada 9X, particularly with the objective
of increasing software reuse. Therefore, it is recommended that
the revisions in Ada 9X be achieved within the existing semantic
boundaries of the current standard. The foci should be limited to
removing inconsistencies and providing specifiable semantic
freedom for the RTE that does not compromise the existing
standard, e.g., allowing entry queues to be serviced in an order
other than the default of FIFO.

Several other recommendations become necessary given the one
regarding Ada 9X. They recognize the value of the ongoing
initiatives identified in Section 6 as reasonable approaches to
resolving issues that are beyond the province of Ada 9X.
Therefore, the recommendations are to continue these initiatives
with increased direction and funding for the purpose of improving
the reuse of software parts for embedded :eal-time MCCR systems.
The requirements for software reuse are sufficiently demanding
that other requirements, viz., performance, are included. :n
addition, it seems appropriate to establish initiatives for
developing architectural classes of AVMs and to investigate
domains of application for the formal qualification of reusable
parts.

8. References

(ACM87a] -- International Real-Time Ada Issues Workshop. ACM SIGAda
Ada Letters, Volume VII Number 6, 1987.

(ACM87b] - Catalog of Interface Features and Options. ACM SIGAda
RunTime Environment Working Group, December 1987.

[ACM88a] - A Model RunTime System Interface for Ada. ACM SIGAda
Ada RunTime Environment Working Group, August 1988.

[ACM88b] - International Real-Time Ada Issues Workshop. ACM SIGAda
Ada Letters, Volume VIII Number 7, 1988.

- 18 -

Analysis of the Impact of the Ada RTE on Software Reuse

[ABD88] - Ada Board's Recommended Ada 9X Strategv.
Ada Board, September 1988.

[CEC88a] - Real-Time Technical Interchange Meeting : Real-Time &
Reuse Working Group. U.S. Army CECOM, CSE, July 1988.

[CEC88b] - Issues Involved in Developing Real-Time Ada Systems,
U.S. Army CECOM, CSE, July 1988.

[CEC88c] - Real-Time Requirements Annex a Ada Reusability Handbook.
U.S. Army CECOM, CSE, 1988 (To be published).

[CEC88d] - Ada Reusability Handbook.
U.S. Army CECOM, CSE, 1988 (To be published).

[CSC86] - Ada Reusability Study. Computer Sciences Corporation,
Technical Report SP-IRD 9, August 1986.

[DoD78] - Department of Defense Reguirements for High-Order
Computer Programming Languaaes - Steelman.
U.S. Department of Defense, 1978.

[DoD83] - Reference Manual for the Ada Programming Languaae -

ANSI/MIL-STD-1815A.
U.S. Department of Defense, February 1983.

[DoD87] - Computer Programmina Language Policy.
U.S. Department of Defense Directive No. 3405.1, April
1987.

[ESD86] - Program Office Guide to Ada. Edition 2.
Electronic Systems Division, Air Force Systems Command,
ESD-TR-86-282, October 1986.

[Hon86] - Rationale for the Design of the Ada Programming Language,
Honeywell SRC & Alsys, Inc., 1986.

[IDA88] - Workshop on Real-Time Systems & Ada : Ada Time
Abstractions Working Group.
Institute for Defense Analyses, June 1988.

[SPC88] - Guidelines for Designing Reusable Software.
Software Productivity Consortium, May 1988.

19-

